Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник “безопаснее” легковушки?

0
1401

Не секрет, что с безопасностью автомобиля связано множество мифов. В форумах, ЖЖ и офлайновых дискуссиях полно советов на тему того, какой автомобиль безопаснее и как лучше себя вести в аварийной ситуации. Большинство этих советов если не бесполезны, то малоосмысленны – человек советует покупать “пятизвездочный” автомобиль по EuroNCAP, а почему, как, собственно, и что эти звезды значат – объяснить не может. В частности, практически никто не понимает, как “звезды” соотносятся с вероятностью серьезно пострадать в аварии конкретного типа и при конкретной скорости. Понятно, что чем больше звезд – тем лучше, но насколько это “лучше” и где проходит безопасный предел? Пользователь LiveJournal 0serg посчитал, как, на чем и куда безопаснее врезаться, и разбил в пух и прах теорию EuroNCAP-овских “звезд”.

Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник

Один из крайне распространенных мифов состоит в том, что очень часто, когда говорят о лобовом ударе автомобилей, скорости этих автомобилей складывают. Вася ехал 60 км/ч, а со встречки на него вылетел Петя на скорости 100 км/ч, удар – ну и сами понимаете, что там на 100 60 = 160 км/ч от машин осталось… Это – грубейшая ошибка. Реальная “эффективная скорость удара” для машин обычно будет равна приблизительно средней арифметической скоростей Васи и Пети – т.е. около 80 км/ч. И именно эта скорость (а не обывательские 160) и приводит к развороченным автомобилям и человеческим жертвам.

“На пальцах” происходящее можно пояснить таким образом: да, при ударе энергия двух автомобилей суммируется – но и поглощают ее тоже два автомобиля, поэтому на каждый автомобиль приходится лишь половина суммарной энергии удара. Корректный расчет происходящего при ударе доступен даже школьнику, хотя и требует определенной смекалки и воображения. Представим себе, что автомобили в момент удара скользят по ровному шоссе без сопротивления (учитывая, что удар происходит за очень короткое время и действующие на машины силы удара гораздо выше сил трения со стороны асфальта – даже при интенсивном торможении это допущение можно считать вполне справедливым). В этом случае движение при ударе будет полностью описываться одной-единственной силой – силой сопротивления сминаемых корпусов металла. Эта сила, по 3-му закону Ньютона, для обеих машин одинакова, но направлена в противоположные стороны.

Ещё на AutoLaws.Net:
Автоподставы: Что делать, если кто-то бросился под вашу машину

Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник

Мысленно поставим между машинами тонкий, невесомый лист бумаги. Обе силы сопротивления (первой машины и второй) будут действовать “через” этот лист, но поскольку эти силы равны и противонаправленны, то они полностью компенсируют друг друга. А стало быть, на протяжении всего удара наш лист будет двигаться с нулевым ускорением – или, другими словами, с постоянной скоростью. В инерциальной системе координат, связанной с этим листом, обе машины как бы “врезаются” с разных сторон в этот неподвижный лист бумаги – до тех пор, пока не остановятся либо (одновременно) не отлетят от него. Вспоминаете методику EuroNCAP где машины врезаются в неподвижный барьер? Удар о наш гипотетический “лист бумаги” в нашей специальной системе координат будет равносилен удару о массивный бетонный блок на той же скорости.

Как посчитать скорость листа бумаги? Это довольно просто – достаточно вспомнить механику соударений из школьной программы. В какой-то момент оба автомобиля “останавливаются” относительно системы координат листа бумаги (это происходит в то мгновение, когда автомобили начинают разлетаться в разные стороны), что позволяет нам записать закон сохранения импульса. Считая массу одного автомобиля m1 и скорость v1, а другого – m2 и скорость v2, получаем скорость листа бумаги v по формуле:

(m1 m2)*v = m1*v1 – m2*v2

откуда

v = m1/(m1 m2)*v1 – m2/(m1 m2)*v2

Для столкновения в “попутном” направлении скорость второй машины следует считать со знаком “минус”.

Относительные скорости машин относительно бумаги (т.е. “эквивалентная скорость удара о бетонный блок”) соответственно равны

u1 = (v1-v) = m2/(m1 m2) * (v1 v2)

u2 = (v v2) = m1/(m1 m2) * (v1 v2)

Таким образом, “эквивалентная скорость” лобового удара действительно пропорциональна сумме скоростей автомобилей – однако берется она с неким “поправочным коэффициентом”, учитывающим соотношение масс автомобилей. Для автомобилей равной массы он равен 0,5, т.е. суммарную скорость нужно поделить пополам – что и дает нам упомянутое в начале заметки типичное для подобных аварий “среднее арифметическое”. В случае столкновения машин разной массы картина будет существенно иной – “тяжелая” машина пострадает меньше, чем “легкая”, причем если различия в массе достаточно велики – разница будет колоссальной. Это типичная ситуация для аварий класса “влетела легковушка в груженый грузовик” – последствия такого удара для легковушки близки к последствиям удара на полноценной “суммарной” скорости, в то время как “грузовик” отделывается небольшими повреждениями, т.к. для него “эквивалентная скорость удара” оказывается равной десятой, а то и двадцатой доле суммарной скорости.

Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник

Итак, мы научились считать “эквивалентную скорость удара” по очень простой формуле: нужно сложить скорости (для удара в попутном направлении – вычесть), а затем определить, какую долю массы составляет ЧУЖАЯ машина от суммарной массы ваших машин и умножить этот коэффициент на посчитанную скорость. Прикидочные значения коэффициента:

Машины примерно одинаковой весовой категории: 0.5

Малолитражка vs легковушка: малолитражка 0.6, легковушка 0.4

Малолитражка vs джип: малолитражка 0.75, джип 0.25

Легковушка vs джип: легковушка 0.65, джип 0.35

Легковушка vs грузовик: легковушка >0.9, грузовик <0.1

Джип vs грузовик: джип >0.8, грузовик <0.2

Например, джип Porsсhe Cayenne массой 2,5 тонны на перекрестке врезается на скорости 100 км/ч в едва начавший левый поворот Ford Focus II массой 1,3 тонны. Суммарная скорость – 100 км/ч, эквивалентная скорость удара для Cayenne – 35 км/ч, а для FF – 65 км/ч.

Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник

Пока все понятно? Тогда едем дальше.

Основная угроза для жизни водителя при ударе определяется (в случае если он пристегнут) деформацией салона автомобиля. Эта деформация, в свою очередь, примерно пропорциональна поглощенной энергии удара. А эта энергия определяется старой доброй формулой “эм вэ в квадрате пополам”, т.е. уже для 80 км/ч она будет в 1,5 раза больше “номинальной” энергии EuroNCAP, на 100 км/ч – в 2,5 раза больше, на 120 км/ч – в 3,5 раза больше, на 140 км/ч – почти в 5 раз больше.

Поэтому реальная безопасность EuroNCAP-овских “звезд” обеспечивается только при эффективной скорости удара менее 80 км/ч!

Иными словами, все что выше 80 км/ч, – потенциально опасно для жизни, невзирая на тип автомобиля. “Горе-гонщиков” на дорогих автомобилях реально спасают лишь “понижающие коэффициенты” упомянутые выше – даже при суммарной скорости в 200 км/ч они, как было показано, обычно снизят эффективную скорость существенно более тяжелой машины до 80 км/ч и менее. Да и тормоза обычно позволяют успеть сбросить хотя бы 20-30 км/ч (а чаще – больше) в последний момент – отсюда и кажущаяся безопасность дорогих джипов. Но при ударе о прочное неподвижное препятствие либо о грузовик все закончится гораздо печальнее. Прочность машины на 100 км/ч – понятие весьма условное! Скорости до 80 км/ч на современных машинах практически безопасны в любой ситуации, но водитель, летящий со скоростью 140 км/ч – это с большой долей вероятности убийца либо самоубийца.

Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник

Надо отметить, что с этой особенностью связан характерный миф о “низкой безопасности” легковых машин, особенно малолитражных и российского производства. Обычно в его подтверждение приводят красноречивые примеры лобового столкновения подобной машинки с каким-нибудь представительским автомобилем или джипом – но вы, полагаю, теперь уже догадываетесь, что основной причиной подобного кошмара становится не столько “низкая прочность” этих машин, сколько низкая масса, из-за которой последствия для легкой машины заведомо будут в разы сильнее последствий для тяжелой. Качество реализации пассивной безопасности машины в подобных ударах уже отходит на второй план. Однако во всех других авариях (вылет с трассы, удар о грузовик, удар с примерно таким же автомобилем) ситуация будет далеко не столь драматичной. Для тяжелых авто справедливы прямо противоположные соображения.

Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник

Коротко – о непристегнутых ремнях безопасности. При ударе о препятствие непристегнутый человек летит на баранку со скоростью, примерно равной эффективной скорости удара. Скорость, которую набирает человек, падающий с пятого этажа здания, при ударе о землю – менее 60 км/ч. Выживает примерно половина. Скорость, которую набирает человек падающий с девятого этажа, – около 80 км/ч. Выживают единицы. Подушки безопасности и удачно выбранная поза позволяют смягчить последствия (сделав выживание на 60 км/ч весьма вероятным, а на 80 – более реальным), но я бы сильно на них не рассчитывал. Буквально плюс 40 км/ч к относительно безопасному значению (которое, как я уже упоминал, в типичных авариях ближе к 60) – и вы гарантированный труп, что бы вы ни делали, и какая бы продвинутая система безопасности в машине ни была. Запас прочности у пристегнутых гораздо выше – там критической будет плюс 100 км/ч к безопасной скорости, и выйти за эти пределы будет не так просто. В неудачных ситуациях (вылет на обочину или под грузовик) обе цифры следует поделить пополам.

Практические советы:

1. Не превышайте сильно скорость. Шансы погибнуть после 120 км/ч растут ОЧЕНЬ быстро, хотя для тяжелых автомобилей безопасный верхний предел обычно несколько выше – увы, за счет безопасности окружающих.

2. Если превышаете – пристегивайтесь. Хотя для относительно небольших скоростей (0-100) без ремня достаточно много шансов выжить, в диапазоне скоростей 100-140 при аварии часто непристегнутые = трупы.

3. Современный тяжелый автомобиль почти всегда значительно безопаснее в авариях с более легкими автомобилями. К авариям с участием грузовиков или вылетом с трассы данное соображение не относится. Не забывайте только, что большая масса далеко не всегда компенсирует плохую пассивную безопасность – старье 20-летней давности настолько хуже современных 4-5-“звездочных” автомобилей, что его вообще мало что может спасти в аварии.

4. Удар о неподвижное тяжелое препятствие на обочине для тяжелой машины опаснее лобового столкновения. Для легкой машины – наоборот.

5. Удар о неподвижную машину и тем более – машину двигающуюся в попутном направлении всегда гораздо безопаснее удара о неподвижное тяжелое препятствие на обочине.

6. Если вы видите, что сейчас будет авария, а уворачиваться уже поздно – тормозите, как то и предписано ПДД. Пытаться вылететь на обочину, не сбрасывая скорости, обычно как минимум не менее опасно.

7. Исключением из пункта 6 является только тот случай, когда вам в лоб на большой скорости летит грузовик – тут лучше делать что угодно, но с его пути уходить. Но эта ситуация мне в реальной жизни пока не встречалась ни разу (а чтобы самим не вылетать на грузовики на большой скорости – см. пункт 1).

Предыдущая статьяАмериканские ученые опровергли рейтинги безопасности автомобилей
Следующая статьяЖаргон дальнобойщиков (словарь)

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.